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Abstract

This note derives an approximate expression of the true Young|s modulus of a rectangular solid under
plane compression between two rough end blocks\ provided that the Poisson|s ratio n of the solid is known[
The friction between the loading platens and the ends of the specimen is assumed to be large enough to
restrain slippage at the contact[ By using the function space concept of Prager and Synge "0836#\ a correction
factor l with calculable error is obtained which can be multiplied to the apparent Young|s modulus "i[e[\
the one obtained by assuming uniform stress _eld# to yield the true Young|s modulus^ it is evaluated
numerically for 9¾ n¾ 9[38 and 9¾ h¾ 2 "where h� b:h with b and h being the half width and half length
of the specimen#[ In general\ l increases with n and h for both plane strain and plane stress compressions[
Within this range of n and h\ l may vary from 9[26Ð0[9 for the plane strain case and from 9[73Ð0[9 for the
plane stress case[ Thus\ the assumption of uniform stress _eld may lead to erroneous interpretation of the
Young|s modulus[ When the special case of n�0:2 and h�0 is considered\ we obtain l�9[8245\ which
compares well with 9[8248 obtained by Greenberg and Truell "0837#[ Þ 0888 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

Although plane strain compression is not a standard laboratory test for geomaterials\ its popu!
larity increases in recent years\ partly because plane strain condition is more conducive to the
formation of strain localization in geomaterials "e[g[\ Rudnicki and Rice\ 0864# and the prediction
of strain localization is a useful way to calibrate constitutive models\ and partly because plane
strain states are commonly encountered in geotechnical engineering problems "e[g[\ Jaeger and
Cook\ 0868#[ For examples\ plane strain compression has been used in studying the problems of
strain localization or fracture formation in rocks by Brown "0863#\ Stavropoulou "0871#\ Wawersik
et al[ "0889#\ Ord et al[ "0880# and Tillard!Ngan et al[ "0881#\ and in rock!like materials by Labuz
et al[ "0885#[ The plane strain compression apparatus has also been developed for soil testing "e[g[\
Vardoulakis and Goldscheider\ 0870^ Drescher et al[ 0889#[
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Most of the previous theoretical studies for plane strain test have been on the instabilities of the
tested solids^ they include the stability analyses for metal!like materials by Ariaratnam and Dubey
"0858#\ Dubey "0864#\ Hill and Hutchinson "0864# and Young "0865#\ for soil!like materials by
Vardoulakis "0870# and Bardet "0880#\ and for rock!like materials by Needleman "0868#\ Chau
and Rudnicki "0889# and Chau "0883#[ To make the problem mathematically tractable\ all of these
analyses assume that the rectangular blocks are loaded by a uniform velocity with no end friction[
Although various experimental techniques have been proposed to reduce the end friction "e[g[\
Labuz and Bridell\ 0882#\ end friction between the loading platens and the specimen inevitably
exists in most of the usual experimental set!up[

Friction between loading machines and the tested specimen has long been recognized to exist[
However\ most of the previous attention has been paid to axisymmetric compression of cylinders\
frictional e}ect has not been considered thoroughly for the plane strain compression tests[ For
example\ Filon|s "0891# pioneering analysis for the nonuniform stress _eld inside a cylindrical solid
of _nite length due to end friction has inspired a series of subsequent and more recent theoretical
analyses by Pickett "0833#\ Balla "0859a\b#\ Peng "0860\ 0862#\ Brady "0860#\ Al!Chalabi "0861#\
Al!Chalabi and Huang "0863#\ and Al!Chalabi et al[ "0863#[ However\ as discussed by Chau
"0886#\ except the original analysis by Filon "0891# none of these studies attempts to calculate the
correction factor for the true Young|s modulus[ Extending the work by Edelman "0838# and
applying the function space concept of Prager and Synge "0836#\ Chau "0886# has re!considered
the frictional e}ect on the apparent Young|s modulus of cylindrical specimens and derived an
approximate solution for the correction factor l\ which can be multiplied by the apparent Young|s
modulus to yield the true Young|s modulus[

The main purposes of this short paper is to derive a correction factor l for the true Young|s
modulus E of a rectangular block of dimension 1b×1h\ by employing the PragerÐSynge "0836#
function space approach[ When friction between the loading platens and the specimen is negligible
or the stress _eld inside the specimen is uniform\ the true Young|s modulus E coalesces with the
apparent Young|s modulus EÞ\ which equals Fh"0−n1#:"1bd# for plane strain compression and
equals Fh:"1bd# for plane stress compression ðwhere F is the applied force per unit thickness along
the x1 direction "see Fig[ 0#\ d half of the axial deformation of the specimen along the direction of
F\ and n the Poisson|s ratio of the specimenŁ[ However\ when friction appears at the contact
between the loading platens and the specimen\ a correction factor l has to be multiplied by EÞ in
order to yield E "i[e[\ E � lEÞ#[

The analysis to be discussed here can be considered as an extension of the theoretical analysis
by Greenberg and Truell "0837#\ which only considers the case of Poisson ratio being 0:2 "i[e[\
n � 0:2# and the case of square specimen "i[e[\ b:h � 0#[ However\ as mentioned previously\ one
of the major reasons why plane strain test is adopted is to capture the onset of strain localization
or shear band formation\ but\ as mentioned in Needleman "0868# and Chau and Rudnicki "0889#\
an additional kinematic constraint that tan u − h:b has to be imposed "where u is the angle between
the normal of the shear band to the x1 axis#[ Experimental studies on plane strain compression of
rock specimens suggest that u ranges from 44Ð61[4> "e[g[\ Wawersik et al[\ 0889^ Ord et al[\ 0880^
Tillard!Ngan et al[ 0881#^ this range of u together with the kinematic constraint\ yields an aspect
ratio b:h of being smaller than 9[6 to 9[21[ Thus\ for practical purposes\ the result by Greenberg
and Truell "0836# for the case of b:h � 0 is rather restrictive[ Therefore\ we will consider in this
paper the correction factor l for all combinations of b:h and n within the practical range[ In
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Fig[ 0[ A sketch for the possible deformed shape "dotted lines# of a rectangular block of width 1b and height 1h under
plane compression between two rough ends\ comparing to the initial undeformed shape "solid lines#[ The origin of the
x0−x1 coordinate is at the center of the block\ the applied force per unit thickness is F\ and the total vertical deformation
is 1d[

addition\ the present analysis considers both plane strain and plane stress compressions\ whilst
Greenberg and Truell|s "0837# analysis applies only to plane strain case[ However\ only the cases
of su.cient large contact friction are considered here\ that is\ partial contact slippage is neglected
in our problem[

Note that another limitation of the present approach is that Poisson|s ratio of the solid has to
be known in advance[ As discussed by Chau "0886#\ this limitation should not be too restrictive\
since the uniaxial compression tests by Peng "0860# on cylindrical specimens of steel and Chelms!
ford granite show that the axial and circumferential strains measured at the mid!level are insensitive
to the end friction and equal\ without appreciable error\ to those with zero end friction[ Thus\ the
Poisson|s ratio can simply be found from the circumferential and axial strains measured at the
mid!level\ regardless of the end conditions[
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Since the analysis is analogous to that by Greenberg and Truell "0837#\ only the main di}erences
and the essential procedure of the analysis is summarized in here[

1[ Governing equations for the problem

If no special treatment is applied to the loading platens of a compression machine\ friction
inevitably exists at the contact between the rectangular specimen and the loading platens[ Such
friction will lead to nonuniform deformation\ and hence nonuniform stress _eld\ inside the speci!
men[ Consequently\ the apparent Young|s modulus of EÞ obtained by assuming uniform stress _eld
inside the specimen may lead to erroneous estimation of the true Young|s modulus E[ Figure 0
sketches a typical deformed shape of the rectangular block of original dimension of 1b×1h under
two!dimensional compression when the end friction is large enough to restrain contact slippage[

The solids considered here are assumed to be isotropic and elastic\ and the Poisson|s ratio is a
known constant\ as discussed in the Introduction[ In particular\ the following two!dimensional
Hooke|s law between the stress tensor "s# and strain tensor "o# applies "e[g[\ Karasudhi\ 0880#]

sij �
m

k−0
ð1"k−0#oij¦"2−k#dijoŁ\ "0#

where i\ j � 0\ 1^ and o � o00¦o11 is the in!plane volumetric strain\ m is the shear modulus and k

equals 2−3n for plane strain and "2−n#:"0¦n# for plane stress[ The Kronecker delta function dij

equals zero if i � j and one if i � j[ The apparent Young|s modulus ði[e[\ EÞ� Fh"0−n1#:"1bd# for
plane strain and EÞ� Fh:"1bd# for plane stressŁ given in the Introduction can be derived by assuming
a uniform axial stress _eld ði[e[\ s11 � F:"1b# and s00 � 9Ł and axial strain of o11 � d:h[ Thus\ "0#
can be used to yield

s11

o11

�
3EÞ

"0¦n#"0¦k#
�

Fh
1db

[ "1#

Therefore\ it follows immediately from the second of "1# that EÞ� Fh"0−n1#:"1bd# for plane strain
and EÞ� Fh:"1bd# for plane stress[ For the coordinate system shown in Fig[ 0\ the end displacement
conditions of our compression problem are]

u1"x0\ 2h# � 3d\ u0"x0\ 2h# � 9^ "2#

and the traction free boundary conditions on the vertical surfaces are

s00"2b\ x1# � 9\ s01"2b\ x1# � 9[ "3#

The total strain energy for our compression problem equals the external work done on the specimen
or is Fd[ That is\ 0

1
Fd on both the upper and lower ends of the specimen if the force F is applied

quasi!statically[
Now\ our main task is to obtain an approximation for l such that the true Young|s modulus E

can be estimated by lEÞ\ where EÞ is the apparent Young|s modulus obtained from the compression
test by assuming zero end friction[
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2[ PragerÐSynge "0836# function space concept

As illustrated by Greenberg and Truell "0837#\ the function space concept of Prager and Synge
"0836# provides a powerful tool to estimate the true Young|s modulus of a solid under plane
compression\ even though nonuniform stresses may exist in the rectangular block[ In particular\
Prager and Synge "0836# noticed that any state of stress for a particular problem of elastic solids
can be considered as a point or vector S in a function space of states[ Since displacement boundary
conditions "2# are prescribed on the top and bottom of the specimen\ the present problem cor!
responds to the so!called Displacement Boundary Conditions "DBC# cases discussed by Prager and
Synge "0836#[ An approximation of l with calculable error can be found since the strain energy
for the exact solution can be bounded by functions of sequences of _ctitious states\ as the unknown
solution S is located on a hypercircle with determinable center and radius[ More speci_cally\
Prager and Synge "0836# showed that a _ctitious state S� called the completely associated state\
which satis_es only the compatibility equation and the displacement boundary conditions "2#\ and
the actual solution S "or the natural state# will form a hypersphere such that vector S� would be
its diameter and vector S would be on the surface of the hypersphere[ A sequence of _ctitious
states called the homo`eneous associated states S?\ which satisfy the compatibility equation and the
homogeneous displacement boundary conditions "obtained by setting the right hand sides of "2#
zero# can always be added to S� such that the above observation remains valid[ When another
sequence of _ctitious states Sý called the complimentary states\ which satisfy the equations of
equilibrium and the stress boundary condition "3#\ is assumed\ the natural state S will lie on a
hyperplane normal to Sý[ The intersection of these hypersphere and hyperplane then forms a
hypercircle on which the unknown S must lie[ By purely geometrical consideration\ Prager and
Synge "0836# showed that the strain energy of the solution S is bounded by the size of the
hypercircle in the function space as]

s
n

q�0

"S� = Iýq#1 ¾ S1 ¾ S�1− s
m

p�0

"S� = I?p#1\ "4#

where m and n are the numbers of the homogeneous associated states and complimentary states
used for S?p and Sýq\ with both of them should be chosen to be linearly independent[ In addition\
the following de_nition for the scalar product between any two states "say S and S?#

S = S? � Ðsijo?ij dV\ "5#

where sij is the stress tensor corresponding to the state S and o?ij the strain tensor corresponding to
S?[ The integration on the right!hand side is done over the entire volume[ The orthonormal sets
for the states S? and Sý are denoted by I?p and Iýq "p � 0\ [ [ [ m and q � 0\ [ [ [ n#\ and de_ned by

I?p = I?r � dpr\ Iýq = Iýr � dqr[ "6#

Attractive features of the present approach include] the upper bound decreases whilst the lower
bound increases as more terms are added to "4# "i[e[\ m and n increase#^ and\ the maximum error
of the strain energy of any proposed approximation is measurable in terms of distance in the
function space[ This function space concept is now applied to our problem of plane compression[
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3[ The lower and upper bounds for l

As remarked earlier\ strain energy of our compression problem equals the external work done
Fd\ which also equals half of S1[ Substitution of this result into "4# yields the following lower and
upper bounds for S1

Ln

Ebh
1"0¦n#0

d

h1
1

¾ 1Fd ¾ Um

Ebh
1"0¦n#0

d

h1
1

\ "7#

where Ln and Um are the normalized lower and upper bounds of the strain energy\ and are de_ned
as]

Ln �
0

mbh0
h
d1

1

s
n

q�0

"S� = Iýq#1\ Um �
0

mbh0
h
d1

1

6S�1− s
m

p�0

"S� = I?p#17[ "8#

Alternatively\ if F and d are known\ "7# can be rearranged to obtain the upper and lower bounds
for the Young|s modulus]

3F"0¦n#
Umb 0

h
d1¾E ¾

3F"0¦n#
Lnb 0

h
d1[ "09#

Substitution of the apparent Young|s modulus given in "1# into "09# yields

lL �
21

Um"0¦k#
¾ l �

E
EÞ

¾ lU �
21

Ln"0¦k#
\ "00#

3[0[ Approximation I

A simple estimation for the correction factor l is the average of the upper and lower bounds\
that is

E � lEÞ� 0
1
"lL¦lU#EÞ\ "01#

where lU and lL are de_ned in "00#[ However\ as will be shown later in Fig[ 1\ when the limit h :
9 is considered\ this prediction for l does not approach 0^ and it is obvious that "01# is only one
of the many possible estimations for l within the upper and lower bounds lU and lL[ Therefore\ a
more re_ned approximation is proposed next[

3[1[ Approximation II

Based upon the comparison with the analytical solution by Watanabe "0887#\ Chau "0887#
proposed the following more re_ned choice for l such that the appropriate limit at h � 9 can be
achieved]
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Fig[ 1[ The correction factor l � E:EÞ vs the geometric ratio h � b:h for the Approximation I given in "01# for various
values of the Poisson|s ratio n under the plane strain "solid lines# and the plane stress "dotted lines# compressions[

l � lU"0−h#¦lLh 9 ¾ h ¾ 0
1

l � 0
1
"lU¦lL# h − 0

1

"02#

3[2[ Selection of S�\ S? and Sý

Since the procedure in obtaining the appropriate states for S�\ S?\ and Sý have been discussed
in Chau "0886#\ we only summarize the corresponding displacement _elds for S� and S? and the
Airy stress function c for Sý being used here in Table 0[ For the sake of completeness and easy
reference\ Tables 1 and 2 also compile the scalar products between S� and S? and between S� and
Sý respectively[ With these scalar products\ the upper and lower bounds for energy Ln and Um can
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Table 0
The displacements for the completely associated state S� and the homogeneous associated states S?p "p � 0\ 1\ [ [ [ \ 4#\
and the Airy stress function c for the complimentary states Sýq "q � 0\ 1\ [ [ [ \ 4#

State u0 u1 State c:m

S?0 bj"0−z1# 9 Sý0 −0:1b1j1

S?1 9 −hz"0−z1# Sý1 −j3b1:01
S?2 bj2"0−z1# 9 Sý2

0
1
z1h1"0−j1#1

S?3 9 −z"0−z1#j1h Sý3
0
3
z3h1"0−j1#1

S?4 bj2z1"0−z1# 9 Sý4
0
1
z1b1"0−j1#1j1

S� 9 −zd

be obtained "see the procedure discussed in Greenberg and Truell\ 0837#\ which\ in turn\ also leads
to solution for l by using "00Ð02#[ The numerical results are discussed next[

4[ Numerical results

Using Approximation I\ Fig[ 1 plots the correction factor l � E:EÞ vs the geometric ratio h � b:h
for n ranging from 9[0Ð9[38[ The dotted lines are the prediction of l for plane stress compression
while the solid lines are for plane stress compression[ Similar to the prediction for compression of
cylindrical specimens "Chau\ 0886#\ the correction factor l drops with both geometric ratio h � b:h
and Poisson|s ratio n[ That is\ l decreases\ or deviates farther away from unity\ as the specimen
becomes shorter[ Since the di}erence between l and unity for plane strain case is substantially
larger than that of the plane stress case\ plane strain compression is more conducive to frictional
e}ect than plane stress compression[ Similar to the case of axisymmetric compression considered
by Chau "0886#\ the correction factor l converges to 0 as the Poisson|s ratio approaches zero[ As
shown in Fig[ 1\ the apparent Young|s modulus may lead to an error of up to 069) for thin and
nearly incompressible materials "i[e[\ n � 9[38 and h � 2#[ Note that when h : 9\ the prediction by
Approximation I does not converge to the proper limit of one^ that is\ no correction factor should
be made for very long specimens\ as the end friction e}ect becomes negligible[

Therefore\ the more re_ned prediction for l by Approximation II given in "02#\ are plotted in
Fig[ 2[ Again\ the solid and dotted lines are for the plane strain and plane stress cases respectively[
As expected l : 0 as h approaches zero[ We believe that this prediction should provide an improved
estimation of l over those given by "01# or in Fig[ 1[

To check the validity of the present prediction\ the special case of n � 0:2 and h � 0 is also
considered\ and we _nd that the correction factor l for the Young|s modulus is about 9[8245 with
a maximum error of 0[9976)\ which agrees well with the result of 9[8248 obtained by Greenberg
and Truell "0837#[ For the case of plane strain compression\ the maximum error for l given in
Figs 1 and 2 is always less than 1[4) for n up to 9[3\ but increases to about 6) for n � 9[38 and
h � 2^ and\ for the cases of plane stress compression\ the maximum error for l given in Figs 1 and
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Table 1
The scalar products for S?i = S?j:"mbh# and S?i = S�:"mbh#

State S?0 S?1 S?2 S?3 S?4 S�

S?0
21
040

0¦k

k−01¦
05
8

h1 05
040

k−2
k−01

21
040

0¦k

k−01¦
05
04

h1 05
340

2k−4
k−0 1

21
0940

0¦k

k−01¦
05
64

h1 7
20

k−2
k−010

d

h1
S?1

05
4 0

k¦0
k−01

05
040

k−2
k−01

05
040

k¦0
k−01

05
0940

2−k

k−01 9

S?2
85
140

0¦k

k−01¦
05
10

h1 05
640

4k−00
k−0 1

85
0640

0¦k

k−01¦
05
094

h1 7
20

k−2
k−010

d

h1
S?3

05
140

0¦k

k−01¦
017

204h1

05
4140

00−4k

k−0 1 9

S?4
21
0640

0¦k

k−01¦
065
624

h1 7
040

k−2
k−010

d

h1
S� Sym[ 30

0¦k

k−010
d

h1

Table 2
The scalar products for Sýi = Sýj:"mbh# and Sýi = S�:"mbh#

State Sý0 Sý1 Sý2 Sý3 Sý4 S�

Sý0
0
1
"0¦k# "0¦k#:5 3"2−k#:04 3"2−k#:04 3h1"2−k#:094 3d:h

Sý1 "0¦k#:09 −3ð2h1"k−2#¦6"0¦k#Ł: −1ð6"k¦0#¦09h1"k−2#Ł: 3ðh1"2−k#−"0¦k#Ł:204 3d:2h
"204h1# "414h1#

Sý2 7"39h1ðh1"0¦k#¦00−kŁ 3"3h1ð19h1"0¦k#¦2"42−6k#Ł 7"0¦k#"39h3¦88#:"06214h1# 9
¦52"0¦k##:"0464h3# ¦34"0¦k##:"0464h3#

Sý3 1ð"0¦k#"134¦1905h3# 3"0¦k#"88¦001h3#:"13144h1# 9
¦139h1"14−2k#Ł:"00914h3#

Sý4 Sym[ "53h3:04904¦13:064#"k¦0# 9
¦53h1"00−k#:2354
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Fig[ 2[ The correction factor l � E:EÞ vs the geometric ratio h � b:h for the Approximation II given in "02# for various
values of the Poisson|s ratio n under the plane strain "solid lines# and plane stress "dotted lines# compressions[

2 is always less than 9[7)[ Therefore\ the numerical results for l given here should be reliably
accurate for practical purposes[

5[ Conclusion

By extending the analysis by Greenberg and Truell "0837# and by applying the function space
concept of Prager and Synge "0836#\ we have obtained numerically the prediction for the correction
factor l\ which can be multiplied by the apparent Young|s modulus to yield the true Young|s
modulus\ for Poisson|s ratio "n# ranging from 9Ð9[38 and the geometric ratio h � b:h from 9Ð2
"where b and h are the half width and half length of the rectangular solid#[ These ranges for h and
n should include most of the conditions that we may encounter in practice[ Similar to the case of
axisymmetric compression "Chau\ 0886#\ we _nd that the correction l is always less than one^ that
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is\ the Young|s modulus is always being overestimated if there is friction between the loading
platens and the specimen[ For the parameters that we have used\ l may vary from 9[26Ð0[ Thus\
the usual assumption of uniform stress _eld may lead to erroneous value of the Young|s modulus
if end friction is not negligible[ Generally speaking\ l decreases with h and n[ The prediction of l

for the special case of n � 0:2 and h � 0 is obtained as 9[8245 with a possible maximum error of
0[9976)\ which agrees well with the prediction of 9[8248 by Greenberg and Truell "0837#[ With
the present approach the maximum error can always be reduced if more terms of the homogeneous
associated states S?p and complimentary states Sýq are added[
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